On the Blow-up Structure for the Generalized Periodic Camassa-Holm and Degasperis- Procesi Equations

نویسندگان

  • Ying Fu
  • Yue Liu
  • Changzheng Qu
  • YING FU
  • YUE LIU
  • CHANGZHENG QU
چکیده

Considered herein are the generalized Camassa-Holm and Degasperis-Procesi equations in the spatially periodic setting. The precise blow-up scenarios of strong solutions are derived for both of equations. Several conditions on the initial data guaranteeing the development of singularities in finite time for strong solutions of these two equations are established. The exact blow-up rates are also determined. Finally, geometric descriptions of these two integrable equations from nonstretching invariant curve flows in centro-equiaffine geometries, pseudospherical surfaces and affine surfaces are given.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Time Fractional Modifed Camassa-Holm and Degasperis-Procesi Equations by Using the Haar Wavelet Iteration Method

The Haar wavelet collocation with iteration technique is applied for solving a class of time-fractional physical equations. The approximate solutions obtained by two dimensional Haar wavelet with iteration technique are compared with those obtained by analytical methods such as Adomian decomposition method (ADM) and variational iteration method (VIM). The results show that the present scheme is...

متن کامل

The Degasperis-Procesi equation as a non-metric Euler equation

In this paper we present a geometric interpretation of the periodic Degasperis-Procesi equation as the geodesic flow of a right invariant symmetric linear connection on the diffeomorphism group of the circle. We also show that for any evolution in the family of b-equations there is neither gain nor loss of the spatial regularity of solutions. This in turn allows us to view the Degasperis-Proces...

متن کامل

On Traveling Wave Solutions of the Θ−class of Dispersive Equations

We investigate traveling wave solutions to a class of dispersive models – the θ-equation of the form ut − utxx + uux = θuuxxx + (1− θ)uxuxx, including two integrable equations, the Camassa-Holm equation (θ = 1/3) and the Degasperis-Procesi equation(θ = 1/4) as special models. When 0 ≤ θ ≤ 1 2 , strong solutions of the θ-equation may blow-up in finite time, correspondingly, the traveling wave so...

متن کامل

ar X iv : 0 90 8 . 05 08 v 1 [ m at h - ph ] 4 A ug 2 00 9 THE DEGASPERIS - PROCESI EQUATION AS A NON - METRIC EULER EQUATION

In this paper we present a geometric interpretation of the periodic Degasperis-Procesi equation as the geodesic flow of a right invariant symmetric linear connection on the diffeomorphism group of the circle. We also show that for any evolution in the family of b-equations there is neither gain nor loss of the spatial regularity of solutions. This in turn allows us to view the Degasperis-Proces...

متن کامل

On the Well-posedness of the Degasperis-procesi Equation

We investigate well-posedness in classes of discontinuous functions for the nonlinear and third order dispersive Degasperis-Procesi equation (DP) ∂tu− ∂ txxu + 4u∂xu = 3∂xu∂ xxu + u∂ xxxu. This equation can be regarded as a model for shallow-water dynamics and its asymptotic accuracy is the same as for the Camassa-Holm equation (one order more accurate than the KdV equation). We prove existence...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011